PT. Alkabelt Sukses Bersama Menjadi Agent Fenner Dunlop BV di Indonesia

PT. Alkabelt Sukses Bersama ditunjuk sebagai Agent Fenner Dunlop Di Indonesia. Fenner Dunlop BV Sebagai sebuah perusahaan Manufaktur Conveyor Belt terbesar didunia serta nama besar yang disandang.

Harga Saham Tambang Batu Bara Kembali Menguat

Indeks saham gabungan bergerak sideways sepanjang perdagangan sesi I, Rabu (02/09/2020)dan mencoba untuk menembus level resisten baru di 5.400 - 5.600

Bellebanne Cleaner Kembali Masuk memasarkan produknya Di Indonesia

Bellebanne Cleaner mulai memasarkan produknya di Indonesia secara langsung. Produk-produk mereka yang sudah teruji disejumlah aplikasi di australia dan amerika sekarang mulai merambah pasar indonesia

Industri Energi Di Indonesia kembali bersemangat

setelah melewati kelesuan karena anjloknya harga batubara, saat ini para pelaku bisnis energi kembali bersemangat.

Suply batu pecah di Indonesia masih jauh dari cukup

dengan banyaknya kebutuhan project infra struktur di indonesia namun tidak didukung banyaknya industri pemecah batu maka suply batu pecah kekurangan suply.

Sabtu, 02 Januari 2021

Perhitungan Kebutuhan Daya dan Sistem Take Up pada Belt Conveyor Untuk Bulk Material

 2.4.    Daya Motor dan Nilai Take Up

Perubahan kapasitas angkut Belt Conveyor secara langsung akan mempengaruhi nilai Take Up yang dibutuhkan guna mempertahankan ketegangan Belt selain itu perubahan nilai kapasitas angkut Belt Conveyor juga akan mempengaruhi nilai daya yang dibutuhkan untuk operasional pengangkutannya. Berikut ini perhitungan yang dapat dilakukan untuk mencari daya motor dan nilai Take Up yang dibutuhkan untuk nilai kapasitas suatu Belt Conveyor
2.4.1. Tegangan Efektif Belt
Nilai tegangan efektif suatu konstrusi Belt Conveyor dapar dihitung dengan persamaan berikut ini :

Te      = Tx + Tyc + Tyr + Tym + Tm + Tp + Tam + Tac (lbs) 

Komponen rumus tegangan efektif Belt adalah dapat dihitung  dengan rumus berikut ini :

Tx     = L x Kx x Kt

Tyc    = L x Ky x Wb x Kt

Tyr    = L x 0.015 x Wb x Kt

Tym  = L x Ky x Wm

Tm    = ± H x Wm

Tam   = M x Vc

Dimana
Tx        = tahanan akibat gesekan pada idler (lbs)                 
Tyc      = tahanan Belt flexure pada Carrying idler (lbs)
Tyr       = tahanan Belt flexure pada Return idler (lbs)
Tym     = tahanan material flexure (lbs)
Tm       = tahanan material lift (+) atau lower (-) (lbs)            
Tp        = tahanan pulley (lbs)
Tam     = tahanan percepatan material (lbs)
Tac      = tahanan dari aksesoris (lbs)
L          = panjang conveyor (ft)
Kt        = faktor koreksi ambient temperature
Kx       = faktor gesekan idler (lbs/ft)
Ky       = faktor untuk menghitung gaya Belt dan beban flexure pada idler
Wb      = berat Belt (lbs/ft)
Wm     = berat material (lbs/ft)
Q         = kapasitas konveyor (tph)
v          = kecepatan Belt (fpm)
v0            = kecepatan initial material saat penjatuhan didaerah loading (fpm)
H         = jarak vertical material lift atau lower (ft)
2.4.1.1. Faktor Koreksi Ambient Temperatur (Kt)

Tahanan putaran idler dan tahanan flexure pada Belt meningkat pada operasi cuaca dingin. Pada cuaca dingin yang ekstrim diperlukan pelumasan lebih pada idler untuk mencegah peningkatan tahanan putaran idler. Nilai Kt sangat dipengaruhi temperatur tempat operasional, berikut nilai koreksi Ambient temperatur (Gambar.2.11)

Gambar.2.9. Kurva Nilai Kt Berdasarkan Temperatur Lokasi Operasional
                     (CEMA, 2002)

2.4.1.2. Faktor Gesekan Idler (Kx)
Nilai Kdapat dihitung dengan rumus (CEMA, 2002) :

 
Kx    = 0,00068(Wb+Wm)[Ai/Si](lbs/ft)

Dimana
A= 1,5 untuk 6-inch dia. Idler roll
A= 1,8 untuk 5-inch dia. Idler roll
A= 2,3 untuk 4-inch dia. Idler roll
A= 2,4 untuk 7-inch dia. Idler roll
A= 2,8 untuk 8-inch dia. Idler roll
2.4.1.3. Faktor Perhitungan Gaya Belt dan Beban Flexure pada Idler (Ky)
Kedua tahanan Belt terhadap flexure yang bergerak diatas idler dan tahanan beban flexure material diatas Belt yang bertumpu pada idler menghasilkan gaya tegangan Belt Ky adalah faktor perkalian untuk menghitung gaya tegangan ini. Nilai Ky dapat dilihat pada Tabel 2.5.


Tabel.2.5. Faktor Nilai Ky

Panjang Conveyor (ft)
Wb + Wm
(lbs/ft)
Persen Kemiringan
0
3
6
9
12
24
33
Derajat Kemiringan Rata-rata
0
2
3,5
5
7
14
18
1000
50
75
0,031
0,028
0,026
0,024
0,023
0,019
0,016
0,030
0,027
0,024
0,022
0,019
0,016
0,016
100
150
200
0,030
0,026
0,022
0,019
0,017
0,016
0,016
0,033
0,024
0,019
0,016
0,016
0,016
0,016
0,032
0,023
0,017
0,016
0,016
0,016
0,016
250
300
0,033
0,022
0,017
0,016
0,016
0,016
0,016
0,033
0,021
0,018
0,018
0,018
0,018
0,018
1400
50
75
0,029
0,024
0,024
0,016
0,021
0,016
0,016
0,028
0,021
0,021
0,016
0,016
0,016
0,016
100
150
200
0,028
0,023
0,019
0,016
0,016
0,016
0,016
0,029
0,020
0,016
0,016
0,016
0,016
0,016
0,030
0,021
0,016
0,016
0,016
0,016
0,016
250
300
0,030
0,020
0,017
0,016
0,016
0,016
0,016
0,030
0,019
0,018
0,018
0,018
0,018
0,018
2000
50
75
0,027
0,024
0,022
0,016
0,016
0,016
0,016
0,026
0,021
0,019
0,016
0,016
0,016
0,016
100
150
200
0,025
0,020
0,016
0,016
0,016
0,016
0,016
0,026
0,017
0,016
0,016
0,016
0,016
0,016
0,024
0,016
0,016
0,016
0,016
0,016
0,016
250
300
0,023
0,016
0,016
0,016
0,016
0,016
0,016
0,022
0,018
0,018
0,018
0,018
0,018
0,018
2400
50
75
0,026
0,023
0,021
0,016
0,016
0,016
0,016
0,025
0,021
0,017
0,016
0,016
0,016
0,016
100
150
200
0,024
0,019
0,016
0,016
0,016
0,016
0,016
0,024
0,016
0,016
0,016
0,016
0,016
0,016
0,021
0,016
0,016
0,016
0,016
0,016
0,016
250
300
0,021
0,016
0,016
0,016
0,016
0,016
0,016
0,020
0,018
0,018
0,018
0,018
0,018
0,018
2.4.1.4. Tahanan Pulley (Tp)
Tahanan Flexure Belt disekitar permukaan Pulley dan tahanan Pulley untuk berputar pada Bearing-nya. Nilai tahanan Pulley dapat dilihat pada Tabel 2.6.


Tabel 2.6. Tegangan Belt Untuk Memutar Pulley

Lokasi Pulley
Sudut wrapº
Tegangan Belt
Daerah kencang
150 – 240
200 lbs per Pulley
Daerah kendur
150 – 240
150 lbs per Pulley
Jenis Pulley lain
Kurang dari 150
100 lbs per Pulley


2.4.1.4. Tahanan Percepatan Material (Tam)
Merupakan tahanan akibat adanya perbedaan percepatan antara material yang jatuh dengan kecepatan Belt. Nilai tahanan percepatan material ini dapat dihitug dengan rumus berikut ini.

Tam = M x Vc

Dengan perhitungan nilai M dan Vc sebagai berikut :



M  = W/g

Vc =   V – V0

Dimana,
M      = Percepatan jatuh material
W      = Berat material yang jatuh detik
Vc     = Perubahan kecepatan (fps)
V       = Kecepatan Belt (fpm)
V0       = Kecepatan jatuh material (fpm)
2.4.1.5. Tahanan Aksesoris
Aksesoris conveyor antara lain : tripper, stacker, plows, Belt-cleaning equipment/scraper, dan skirtboard. Perhitungannya dapat dengan menggunakan rumus berikut ini.

Tac =Tbc + Tpl + Tsb (lbs)

Tbc = Tahanan plows
Nilai tahanan plow dapat dilihat pada Tabel 2.7.


Tabel 2.7. Discharge Plow Allowed

Jenis Plow
Tegangan ( lbs/in lebar belt)
Full V atau Plow tunggal yang dipasang miring (membersihkan seluruh material dari belt)
5,0
Partial V atau Plow tunggal yang dipasang miring (membersihkan sebagian material dari belt)
3,0


Tpl =  Tahanan dari peralatan Belt-cleaning/scraper
Scraper biasanya lebih dari satu dan bekerja menekan Belt.Tahanan yang dibutuhkan sekitar 2 sampai 3 lbs/inch dari lebar Belt. Nilai tahanan ini dapat dihitung dengan menggunakan rumus berikut ini.

Tpl = n . 3 . b (lbs)

Dimana,
b          = Lebar Belt (inch)
Tsb      = Tahanan gesekan pada karet skirtboard
Nilai tahanan yang ditimbulkan oleh gesekan yang terjadi oleh karet skirtboard yang menyentuh Belt dapat dihitung dengan rumus berikut ini.

Tsb = ( 2 . Cs . Lb . hs2 ) + ( 6 . Lb ) (lbs)

Dimana
Cs = faktor dari beberapa material pada Tabel 2.8
Lb = Panjang skirtboard (ft)
Hs = Kedalaman material mengenai skirtboard = 0,1 x lebar Belt (in)


Tabel 2.8. Faktor Gesekan Beberapa Jenis Material

Material
Cs Factor
Alumina, pulverized, dry
0.121
Ashes, coal, dry
0.057
Bauxite, ground
0.188
Beans, navy, dry
0.080
Borax
0.073
Bran, granular
0.024
Cement, Portland, dry
0.212
Cement clinker
0.123
Clay, ceramic, dry fines
0.092
Coal, anthracite, sized
0.054
Coal, bituminous, mined
0.075
Coke, ground fine
0.045
Coke, lumps and fines
0.019
Copra, lumpy
0.020
Cullet
0.084
Flour, wheat
0.027
Grains, wheat, corn or rye
0.043
Gravel, bank run
0.115
Gypsum, 1/2" screenings
0.090
Iron ore, 200 lbs/cu ft
0.276
Lime, burned, 1/8"
0.117
Lime, hydrated
0.049
Limestone, pulverized, dry
0.128
Magnesium chloride, dry
0.028
Oats
0.022
Phosphate rock, dry, broken
0.018
Salt, common, dry, fine
0.081
Sand, dry, bank
0.137
Sawdust, dry
0.008
Soda ash, heavy
0.070
Starch, small lumps
0.062
Sugar, granulated dry
0.034
Wood chips, hogged fuel
0.009


2.4.2. Sistem Take Up
Berikut ini adalah fungsi sistem pengencang (Take Up) menurut Juanda Toha, 2002.
1.    Untuk menjamin bahwa tegangan terendah yang terjadi pada sabuk lebih besar dari tegangan minimum yang diperlukan untuk mencegah terjadinya slip antara pulley penggerak dengan sabuk
2.    Untuk mengkompensasikan perubahan panjang sabuk akibat mulurnya sabuk
3.    Sebagai cadangan panjang sabuk, akibat terjadinya penyambungan ulang (Replicing)
Terdapat beberapa hal yang perlu diperhatikan dalam proses perencanaan sistem pengencang (Take Up), antara lain :
2.4.2.1.Panjang Pergerakan Sistem Pengencang
Untuk menjamin fungsi sistem pengencang sebagaimana mestinya, mak panjang pergerakan sistem pengencang harus diperhatikan dengan seksama. Besarnya panjang pergerakan sistem pengencang sangat bergantung pada jenis sabuk yang digunakan .Secara umum untuk sabuk dengan rangka kain, panjang pergerakan minimum adalah 1 – 3% dari panjang sabuk, sedangkan untuk sabuk dengan rangka baja panjang pergerakan minimum adalah   0,25 – 0,5 % dari panjang sabuk. CEMA merekomendasikan panjang pergerakan sebagai mana ditunjukan pada Tabel 2.9.


Tabel 2.9. Panjang Pergerakan Sistem Pengencang Yang Direkomendasikan


Penyambungan Mekanis
Penyambungan Vulkanisir
100%  nilai tegangan
75 atau kurang nilai tegangan
100%  nilai tegangan
75 atau kurang nilai tegangan
Screw Take Up
2%
1,5%
4%
3%
Automatic Take Up
1,5%
1%
2,5% + 2 ft

2.4.2.2. Lokasi Sistem Pengencang
Secara umum posisi sistem pengencang yang paling murah adalah pada sisi belakang untuk konveyor mendaki, karena tidak diperlukan tambahan pulley pengencang. Sedangkan untuk konveyor yang panjang, horizontal atau sedikit Incline posisi sistem pengencang yang baik adalah didekat sistem penggerak dikarenakan dapat secara cepat memberikan respon tegangan guna mencegah terjadinya Slip saat mulai dilakukan Start dan ketika ingin Stop. Pertimbangan lain yang perlu diperhatikan saat menentukan lokasi Take Up adalah kondisi ruang yang tersedia, kemudahan perawatan, dan pertimbangan ekonomis.
2.4.2.2. Perhitungan Sistem Pengencang
Berdasarkan fungsi dari adanya Take Up maka diperlukan sejumlah beban atau gaya yang diberikan agar ketengangan Belt terjaga dan operasional Belt Conveyor tidak terjadi Slip. Menurut Juanda Toha, 2002. Perhitungan beban Gravity Take Up dapat dilakukan dengan rumus sebagai berikut :
Dimana :
Mcw = Massa pemberat tambahan yang diperlukan (Kg)
Mtup = Massa pulley pengencang
Te      = Tegangan efektif sabuk

2.4.3. Daya Motor
Daya yang dibutuhkan Belt conveyor yang memiliki tegangan efektif, Te pada drive pulley dapat dihitung dengan rumus CEMA, 2007 sebagai berikut:




 Dimana ,
P          = Daya Belt (HP)
Te        = Tension efektif (lbs)
v          = Kecepatan Belt (fpm)

DAFTAR PUSTAKA

ARPM(2011)Conveyor and Elevator Belt HandbookIndianapolis: Association for Rubber Products Manufacturers, Inc.
CEMA. (2007). Belt Conveyor for Bulk Materials Six Edition 2nd Printing. USA: Conveyor Equipment Manufacturers Association.

Hartman, H.L. (1992)SME Mining Engineering Handbook. Colorado: Society for Mining Metallurgy and Exploration, Inc.

Nasher, Z. (2014). Perancangan Konveyor Spreader Kapasitas 1200 TPH Untuk Material Batubara dengan 0,8 Ton/M3. Skripsi, Fakultas Teknik: Universitas Brawijaya.

Peurifoy, R., Schexnayder, C., Shapira, A. (2006)Construction Planning, Equipment, and Methods. Mc-Graw Hill : New York.

Raymond, L. (2002). SME Mining Engineering Handbook: Colorado : Society for Mining Metallurgy and Exploration Inc.

Rudianto. (2013). Rancang Bangun Belt Conveyor Trainner Sebagai Alat Bantu Pembelajaran. Jurnal Teknik Mesin Politeknik Kediri, 4(2). 15-26.

Subba, R. (2011). Mineral Benefication. Boca Raton: CRC Press.

Swinderman PE, R Todd., Larry J Goldbeck & Andrew D Marti. (2002), The Practical Resource for Total Dust & Material Control. Illinois: Martin Engineering.


Toha, J. (2002). Perancangan, Pemasangan, dan Perawatan Konveyor Sabuk dan Peralatan Pendukung. PT. Junto Engineering: Bandung.
Share:

Part dalam Belt Conveyor dan Bagian - bagiannya

 

Reclaim Feeder (Pengumpan Belt Conveyor dari Stockpile)


2.1.    Belt Conveyor
Belt conveyor adalah alat angkut yang bisa dipakai untuk jarak pendek, sehingga biasa disebut Belt Loader atau Belt Dumper, namun bisa juga dipakai untuk jarak angkut yang jauh, melebihi 1500 meter. Sekarang sudah ada Belt Conveyor sebagai alat transportasi untuk jarak jauh yang melebihi 30 km. Biasanya Belt Conveyor dipilih apabila tonase material yang akan diangkut per satuan waktu adalah besar (Indonesianto. 2005).
Belt conveyor merupakan suatu alat pemindah material yang berbasis teknologi tinggi yang semakin banyak digunakan pada industri - industri yang sedang berkembang dibeberapa negara. Dengan menggunakan Belt Conveyor, perusahaan mampu menghemat biaya produksi yang sangat tinggi, serta meningkatkan laju produksi dengan kecepatan yang signifikan dan stabil (Alfian, H. 2011).
Belt Conveyor atau konveyor sabuk adalah media pengangkutan yang digunakan untuk memindahkan muatan dalam bentuk satuan atau tumpahan, dengan arah horizontal atau membentuk sudut inklinasi dari suatu sistem operasi yang satu ke sistem operasi yang lain dalam suatu jalur proses produksi, yang menggunakan sabuk (Belt) sebagai penghantar muatannya (Zainuri, 2006).
Kelebihan dari transportasi dengan Belt Conveyor antara lain bekerja secara otomatis, mudah dalam memulai operasi dan terus beroperasi secara terus menerus. Belt Conveyor  hampir tidak memiliki waktu jeda atau istirahat ketika beroperasi, tidak terganggu oleh cuaca buruk, yang sering mengganggu truk pengangkutan. Belt Conveyor  juga membutuhkan tenaga kerja yang jauh lebih sedikit dibandingkan alat transportasi konvensiona seperti truk (Hartman, 1992).
2.1.1. Komponen Conveyor
Berikut ini adalah komponen – komponen dari konstruksi suatu Belt Conveyor (Gambar 2.1)






Gambar 2.1. Komponen Kontruksi pada Belt Conveyor (Swinderman, 2002)


Menurut Partanto (2000) bagian – bagian penting yang terdapat dalam suatu conveyor antara lain :  

1.        Drive Pulley

Merupakan Pulley yang berfungsi menyalurkan energi gerak putar pada Belt sehingga Belt bergerak. Biasanya sebagai discharge Pulley dan juga drive Pulley. (Gambar 2.1.)

2.        Tail Pulley dan Head Pulley

Head Pulley adalah Pulley yang berada pada ujung depan Belt dimana material dicurahkan. Untuk beberapa desain pulley ini digunakan sebagai Pulley penggerak. (Gambar 2.1)
Tail Pulley merupakan Pulley yang pada umumnya berada diujung belakang Belt dan tidak berputar secara langsung oleh Drive-unit tetapi berputar karena mengikuti gerakan Belt.(Gambar 2.2)

Gambar 2.2. Konstrusi Belt Conveyor pada daerah dekat Loading Chute
(CEMA, 2007)


3.        Snub Pulley (pada head-end dan tail-end)

Merupakan Pulley tambahan yang berfungsi untuk memperbesar sudut lilitan Belt  pada Drive. Lokasi pemasangan Snub Pulley dapat dilihat ada (Gambar.2.1.)

4.        Bend Pulley

Merupakan Pulley yang memiliki fungsi melengkungkan atau mengubah arah Belt.(Gambar 2.1)

5.        Take-up Pulley

Merupakan Pulley yang dikombinasikan dengan sistem Take Up, pada gambar 2.4 dapat dilihat Pulley ini dikombinasikan dengan beberapa macam sistem Take Up. Untuk Automatic Take Up Pulley ini dirancang untuk dapat bergerak mengimbangi operasional Belt Conveyor.

6.        Conveyor Belt

Merupakan bagian yang berfungsi menerima transfer enargi gerak dari Pulley yang berputar, Belt akan mengangkut material dari satu ujung suatu kontruksi Belt Conveyor ke ujung lainnya. Belt dapat dibuat dari beberapa bahan, salah satu diantaranya adalah tenunan benang kapas (Cotton) sehingga membentuk suatu Carcas maupun berupa rangkaian kawat baja yang disebut Steel Cord (Gambar 2.2)

7.        Roller Idlers Roll

Berfungsi untuk menahan atau menyangga Belt pada bagian Carryin dan Return. Jarak antar Idlers tergantung dari fungsi kegunaannya, berikut ini adalah pembagian Idlers menurut fungsi keguaannya :

a.                   Impact Idlers (Impact roller)

Merupakan Idlers yang terletak pada daerah tumpahan material ke dalam Belt, biasanya terbuat dari Rubber yang berfungsi menahan beban Impact dari material yang jatuh diatas Conveyor, sehingga dapat mengurangi kerusakan Belt. ( Gambar 2.2)

b.    Carry Idlers

Carrying Idlers adalah Idlers yang berfungsi untuk menyangga Belt yang membawa muatan material. dapat dilihat pada Gambar 2.3.

c.    Return Idlers (Return roller)

Merupakan Idlers yang berfungsi untuk menyangga Belt dengan muatan kosong, secara umum terletak pada bagian bawah Carrying Idlers (Gambar 2.3.)

Gambar 2.3. Cross section kontruksi Conveyor Belt (CEMA, 2007)

d.        Transition Idlers

Merupakan Idlers dengan sudut yang disesuaikan guna menghindari ketidakstabilan Belt ketika terjadi perubahan sudut Idlers, baik dari kecil menjadi besar ataupun sebaliknya. (Gambar 2.2.)

e.    Weighing Idlers

Idlers ini merupakan Carry Idler yang ditempatkan pada Weight Bridge (timbangan). Dengan tingkat kepresisisan yang lebih tinggi dari pada Carry
Idler lainnya.

f.     Training Idlers

Idlers ini digunakan untuk membantu kelurusan sabuk yang berfungsi membawa (Carrying) material maupun yang tidak membawa material (Return).

8.        Take-up unit

Merupakan sistem yang diinstalasi guna mempertahankan ketegangan Belt yang mengimbangi peregangan Belt saat operasional pengangkutan sedang dilakukan. Terdapat dua macam sistem Take Up yaitu Manual Take Up dan Automatic Take Up.
  

Gambar 2.4. Beberapa macam sistem Take Up (CEMA,2007)

9.        Skirtboards

Merupakan instalasi yang dipasang setelah Loading Chute yang bertujuan membentuk Profile tumpukan batubara dan menstabilkan tumpukan batubara hingga mampu mengimbangi kecepatan Belt. (Gambar 2.5)




Gambar 2.5. Skirtboard Setelah Daerah Transfer Point (CEMA, 2007)

10.    Belt Cleaner

Cleaner merupakan peralatan yang digunakan untuk membersihkan sisi Belt dari material sisa yang tidak tercurahkan saat terjadi Loading dan tetap menempel pada sisi Belt, penggunaan Cleaner dapat dilihat pada Gambar 2.6.



Gambar 2.6. Multiple Belt Cleaning System (CEMA, 2002)


DAFTAR PUSTAKA

ARPM(2011)Conveyor and Elevator Belt HandbookIndianapolis: Association for Rubber Products Manufacturers, Inc.
CEMA. (2007). Belt Conveyor for Bulk Materials Six Edition 2nd Printing. USA: Conveyor Equipment Manufacturers Association.

Hartman, H.L. (1992)SME Mining Engineering Handbook. Colorado: Society for Mining Metallurgy and Exploration, Inc.

Nasher, Z. (2014). Perancangan Konveyor Spreader Kapasitas 1200 TPH Untuk Material Batubara dengan 0,8 Ton/M3. Skripsi, Fakultas Teknik: Universitas Brawijaya.

Peurifoy, R., Schexnayder, C., Shapira, A. (2006)Construction Planning, Equipment, and Methods. Mc-Graw Hill : New York.

Raymond, L. (2002). SME Mining Engineering Handbook: Colorado : Society for Mining Metallurgy and Exploration Inc.

Rudianto. (2013). Rancang Bangun Belt Conveyor Trainner Sebagai Alat Bantu Pembelajaran. Jurnal Teknik Mesin Politeknik Kediri, 4(2). 15-26.

Subba, R. (2011). Mineral Benefication. Boca Raton: CRC Press.

Swinderman PE, R Todd., Larry J Goldbeck & Andrew D Marti. (2002), The Practical Resource for Total Dust & Material Control. Illinois: Martin Engineering.


Toha, J. (2002). Perancangan, Pemasangan, dan Perawatan Konveyor Sabuk dan Peralatan Pendukung. PT. Junto Engineering: Bandung.
Share:

Keadaan Geologi dan Stratigrafi Pulau Karimun, kepulauan Riau

 

Peta Rencana Tata Guna Lahan Pulau Karimun (dokumen PT. RAI)

Keadaan Geologi dan Stratigrafi
          Mengacu pada hasil pemetaan geologi oleh S. Koesoemadinata, K. Sutisna, T.C. Amin, Sukardi, dan B. Hermanto (Pusat Penelitian dan Pengembangan Geologi, 1994), Pulau Karimun dibentuk oleh berbagai jenis batuan beku, sedimen, dan metamorf yang berumur pra tersier, ditutupi oleh  sedimen lepas sampai agak padu  dari satuan alluvium  tua dan alluvium muda yang berumur kuarter (Gambar 2.2).
          Sementara granit didaerah pulau Karimun berumur trias tengah-akhir, terdiri atas granit biotit, turmalin aplit, pegmatite dan greisens. Pulau Karimun secara geologi terletak pada zona busur Kepulauan (Sunda Platform), yang merupakan penerusan arah tenggara lempeng benua Eurasia dan hasil dari proses tektonik  mesozoikum.

Stratigrafi
Busur Kepulauan (Sunda Platform), yang merupakan penerusan arah tenggara lempeng benua Eurasia, merupakan hasil dari proses tektonik mesozoikum. Batuan tertua yang membentuk daerah ini adalah formasi malang yang terdiri kelompok batuan gunung api riodasitik, serpih hornfels, batu pasir, rijang, konglomerat dan batugamping. Batuan dalam keadaan segar, kompak, masif, keras dan pejal, umumnya mempunyai permeabilitas dan porositas rendah hingga kedap air. Lapisan pembawa air di satuan batuan ini hadir pada zona-zona pelapukan dan rekahan, sehingga tingkat peresapan dan akumulasi air tanah relatif kecil.
Material endapan di atas batuan granit adalah endapan alluvium tua dan alluvium muda, berumur kuarter hingga resen berupa material-material bersifat lepas hingga semi padu dari hasil lapukan dan rombakan batuan yang lebih tua (granit karimun), dominan berupa pasir kuarsa. Litologi penyusun lainnya terdiri dari lempung, lanau, kerikil, terumbu koral, gambut dan sisa-sisa tumbuhan. Pada endapan alluvium ini terkandung pula bijih timah, menempati daerah dataran pantai yang sempit. Dari segi hidrogeologi, material pasir berbutir kasar-halus hasil lapukan granit tersebut bersifat lolos air (Permeable).


Sumber : Dokumen Inventarisasi Geologi wilayah Pantai Kemen.ESDM 1998
Gambar.  Peta Geologi Regional Pulau Karimun Besar

Topografi dan Geomorfologi
Berdasarkan sejarah geologinya Pulau Karimun termasuk kawasan Tanah Sunda, yang meliputi pulau-pulau di Indonesia bagian barat, Semenanjung Malaya, serta paparan laut dangkal diantaranya. Proses pembentukan dataran yang mencakup pelapukan dan pengikisan untuk jangka waktu yang cukup lama, telah menghasilkan bentuk bentang alam atau topografi yang khas.
Secara umum, bentuk topografi yang ada di wilayah Pulau Karimun adalah dataran rendah bergelombang dengan permukaan yang tertutup oleh tanah pelapukan yang cukup tebal , wilayah Pulau Karimun mempunyai kondisi Geomofologi yang dapat dibagi dua yaitu Satuan Morfologi Dataran dan Satuan Morfologi Perbukitan Bergelombang Lemah-Terjal.
Satuan Morfologi Dataran (0-25 m) merupakan daerah dataran pantai dan dataran rendah sedikit bergelombang. Morfologi seperti ini menempati daerah pinggiran pantai, rawa-rawa serta pada beberapa daerah di sekitar sungai. Dari permukaan laut, satuan morfologi dataran memiliki elevasi berkisar dari 0-25 m. Di Pulau Karimun Besar, satuan ini menempati pada bagian Selatan, terdapat lahan yang bergambut (daerah Sei Raya dan sekitarnya), di bagian Barat dan Timur, yang dicirikan dengan terdapatnya aliran sungai yang relatif pendek dengan kemiringan dasar sungai yang landai, dan sungai-sungai bersifat musiman. Satuan Morfologi ini terdiri dari endapan-endapan Alluvium muda dan tua, berupa pasir kuarsa dan material terumbu koral.
Satuan Morfologi Perbukitan Bergelombang Lemah-Terjal (25-437 m) merupakan bentang alam perbukitan bergelombang lemah - sedang yang memiliki pelamparan cukup luas, yaitu pada bagian Barat dan Timur pulau. Batuan penyusun Morfologi ini terutama material-material hasil lapukan dan rombakan dari granit yang terakumulasi pada lembah antar bukit dan dataran pantai. Sedangkan morfologi bergelombang sedang - terjal umumnya dijumpai pada bagian utara pulau. Kenampakannya dicirikan dengan tonjolan-tonjolan yang memiliki ketinggian yang kontras dengan daerah di sekitarnya, sebagai contoh Bukit Masjid, Gunung Jantan dan Gunung Betina. Aliran sungai yang pendek dan bersifat musiman banyak dijumpai pada daerah ini. Batuan penyusun Morfologi seperti ini sebagian besar adalah granit padu.
Share:

Rabu, 07 Oktober 2020

ANALISA KERUSAKAN LAGGING PULLEY PADA BELT CONVEYOR

Batubara merupakan salah satu potensi alam yang cukup menjanjikan di daerah Sumatera Selatan, khususnya di pertambangan batubara Tanjung Enim. Dalam proses pengangkutan material batubara digunakan belt conveyor, belt conveyor itu sendiri berfungsi sebagai suatu alat pengangkut atau memindahkan material batubara dari tempat satu ke tempat lainnya, belt conveyor sendiri memiliki kelebihan dan keunggulan, diantaranya ; kapasitas angkut yang besar, aliran bahan yang diangkutnya kontinyu, daya penggerak yang diperlukan relatif kecil dan tidak terlalu bising dalam pengoperasiannya. Pada permukaan pulley dari suatu conveyor terdapat pelapis karet yang berfungsi untuk menambah nilai koefisien gesekan antara permukaan pulley dan bagian bawah dari belt conveyor, mencegah belt slip, memperkecil beban dari counter weight, mengurangi stress pada belt serta memperpanjang usia permukaan belt.

Pulley Conveyor


1. PENDAHULUAN Daerah Sumatera Selatan merupakan daerah lumbung energi, yang memiliki berbagai macam sumber alam yang dapat digali, sebagai contoh sumber alam berupa batubara. Batubara digali dari dalam tanah dan kemudian diangkut dan diolah menjadi suatu bahan bakar yang sangat diperlukan. Dalam suatu pengolahan batubara salah satu alat yang terpenting yang dipergunakan adalah belt conveyor, belt conveyor itu sendiri berguna untuk mengangkut dan menyalurkan batubara. Pada dasarnya bentuk fisik dari belt conveyor adalah sama, hanya berbeda pada komponen-komponen tertentu sesuai dengan penggunaannya. Sistem belt conveyor terdiri dari : lima rangkaian CE dengan lebar belt 1200 mm, dua rangkaian CD dengan lebar belt 1600 mm, satu rangkaian belt dengan lebar 1600 mm. Secara umum Instalasi dari suatu belt conveyor terdiri dari belt, frame (struktur penyangga), Hopper, Pulley, Idler, Scraper. Diagram instalasinya dapat dilihat pada gambar 1.

Distribusi conveyor-conveyor ini saling berhubungan pada suatu tempat yang disebut titik distribusi (CDP) yang berfungsi untuk memisahkan material batubara dari tanah. Material digali oleh lima BWE diangkut oleh lima conveyor menuju titik distribusi. Bila material adalah tanah, maka dimasukkan ke tempat pembuangan. Bila material batubara dimasukkan ke CC untuk ditimbun pada penimbunan batubara (Stock Pile). Sebagai alat pengangkut, belt conveyor memiliki keunggulan dan kelemahan. Adapun keunggulan antara lain : kapasitas angkutnya besar, aliran bahan yang diangkutnya kontinyu, daya penggerak yang diperlukan relatif kecil, tidak terlalu bising selama beroperasi. Belt yang berfungsi sebagai pembawa material adalah jenis Steel Cord. (1) Panjang belt merupakan jarak horizontal antara dua buah pulley yaitu head pulley dan tall pulley conveyor. Panjang Conveyor Coal (CC) dapat dilihat pada tabel 1. Pulley merupakan tromol yang permukaannya dilapisi karet berfungsi sebagai pembatas dan penerus gerak dari belt. Ada beberapa komponen pulley yang terpasang di hopt station dan heek station. Pulley ada beberapa jenis sesuai dengan fungsinya yaitu : Drive Pulley berfungsi sebagai penerus gerak dari gear box untuk menggerakkan belt, Take-up pulley berfungsi sebagai pengencang belt dan penerus gerak dari drive pulley, Return pulley berfungsi sebagai pembalik gerak bagian bawah ke atas dari gerak pulley dan gerak drive pulley, Straight pulley berfungsi meratakan posisi belt pada saat keluar dari take-up pulley dan pada saat masuk return pulley, Discharger pulley berfungsi sebagai pencurah material ke conveyor berikutnya.

BELT CLEANER UNTUK MEMBERSIHKAN BELT

Pembersih belt berfungsi untuk membersihkan belt dari kotoran yang melekat pada belt agar tidak terganggunya operasi dari komponen yang bersangkutan. Pembersih belt terdiri dari : Double Blade Scrapper, Multi Blade Scrapper, Plought Blade Scrapper. Bahan yang digunakan untuk pembersih belt ini adalah karet yang bekas belt yang sudah rusak yang dibuat untuk diikat pada besi penahan pembersih belt tersebut. 

Pembersih pulley berfungsi mencegah melekatnya kotoran pada pulley. Jika banyak kotoran berupa tanah yang melekat pada pulley akan menyebabkan belt menjadi kencang dan akhirnya putus. Belt conveyor dapat dioperasikan dengan dua cara, yaitu : Secara otomatik dan secara manual (Local Control Sistem). 

Belt conveyor itu sendiri digerakkan oleh pulley. Dalam suatu industri terutama yang berorientasi pada profit akan sangat memperhatikan masalah kualitas hasil, kehandalan operasi, efisiensi operasi, dan keselamatan lingkungan. 

Untuk menunjang dan menjaga kelancaran operasi tersebut, mutlak dilakukan pemeliharaan dan perawatan terhadap peralatan-peralatan yang ada. Pada belt conveyor sering sekali terjadi kerusakan pada lagging pulley. 

Untuk itulah penulis melakukan penelitian dan menganalisa kerusakan lagging pulley pada belt conveyor. 

2. BAHAN DAN METODE Metode penelitian dilakukan di Perusahaan Tambang Batubara Bukit Asam Tanjung Enim (bersifat eksperimen dan analisa). 

Bahan analisa dan pengujian yaitu lagging pulley pada belt conveyor, dimana pada peralatan tersebut sering terjadi kerusakan. Untuk itu diperlukan suatu analisa cara perawatan dan bagaimana pencegahan terjadinya kerusakan. 

CARA RUBBER LAGGING PULLEY

3. PEMBAHASAN Pelapisan karet pada permukaan pulley dari suatu system conveyor adalah bermanfaat untuk : menambah nilai koefisien gesekan antara permukaan pulley dan bagian bawah dari pada conveyor belt, mencegah belt slip, memperkecil beban dari counter weight yang juga mengurangi stress pada belt, memperpanjang usia permukaan belt. 

Keunggulan dari sambungan V-Joint adalah sebagai berikut : mempunyai kekuatan sambungan yang sangat baik, arah rotasi ke pulley tidak perlu diperhatikan, dapat digunakan pada belt bolak-balik (reversing belt), bagian celahnya diisi dengan karet isian dengan lapisan CN (CN Filler). 

Preparasi Pulley : Kasarkan permukaan pulley, bersihkan tricloroethyline (cleaning solvent) secara merata hingga 100% kering, kuaskan satu lapisan metal primer (SC 2000 atau SC 3000), setelah metal primer kering, kuaskan 1 lapis SC 2000 dan biarkan hingga 100% kering. 

Preparasi Karet Lagging ; per iapan karet dengan menye et karet dengan kemiringan 45 , lakukan pemasangan permukaan karet dengan gerinda flex atau brush kecuali yang ber CN bonding layer. 

Preparasi Lagging : setelah dibersihkan dengan cleaning solvent, permukaan overlap di kuaskan satu lapis SC 2000 pada drum, biarkan hingga 50% kering. Gunakan square / siku untuk membuat garis tegak lurus dengan tepi drum. 

Kuaskan SC 2000 satu lapis pada bagian CN bonding layer. Lekatkan bagian ujung dari karet lagging sesuai dengan garis yang telah dibuat. Segera kuaskan permukaan sambungan dengan SC2000. 

Lekatkan karet seksama pada permukaan drum. Hindari terjadinya gelembung udara. Ratakan permukaan karet dengan roll untuk mengeluarkan gelembung udara. Untuk memperkuat, lakukan pemukulan secara merata dengan palu karet. 

Rapikan karet yang tersisa pada bagian tepi drum Rapikan / sayat kelebihan karet pada areal sambungan. Buatlah alur (groove) untuk merapikan alur keseluruhan. 

Sambungan diisi dengan CN Filler rubber beberapa lapis sesuai dengan ketebalan karet lagging yang dipakai. Lakukan sayatan / gerinda pada CN filler rubber hingga rata dengan permukaan karet lagging. Masalah-masalah yang ada pada lagging pulley : Pemotongan karet kurang tepat, pemasangan lapisan kurang rata, hasil sambungan tidak digerinda, selesai penyambungan langsung digerinda.

3.1 Langkah-Langkah Proses Lagging pulley Alat bantu yang harus disiapkan, seperti : palu Rubber (Rubber mallet 600 gram,1200 gram), pisau / cutter blade L-150, rubber disc sand P16, P60, P80, brush wire (sikat kawat), gerinda tangan (angel grinder), rotating wire brush, needle roller. 

Perlengkapan kerja : drum pulley yang akan di lagging, support (dudukan) dari pada drum pulley, mesin bubut. Perlengkapan Material : cleaning fluid (solvent) atau tulune, metal primer, SC2000, hardener, rubber lagging pulley, sesuai dengan perhitungan panjang drum dan diameter drum. Misal : Ø drum x π 80 mm. Rubber filler layer, disesuaikan dengan lebar dan bentuk sambungan lagging. (2) 3.2 Cara Pengerjaan / Pelaksanaan Cara pengerjaan atau pelaksanaan proses lagging pulley adalah : drum pulley di bubut, drum pulley dibersihkan dengan menggunakan gerinda tangan (angel grinder) ataupun sand blasting dengan maksud untuk menghilangkan karat atau gram-gram akibat pembubutan. 

Jenis pasir yang digunakan adalah jenis pasir coral. Gambar 5: Pasir Coral Setelah selesai digerinda, kemudian kita kuaskan larutan solvent (cleaning fluid), tunggu selama 20 menit. Kemudian kuaskan cairan metal primer / konprim sampai benarbenar rata, tipis saja dan jangan terlalu tebal, biarkan hingga benar-benar kering 100% (selama minimal 2 jam atau disesuaikan dengan kondisi cuaca). 

Setelah itu drum pulley di lem dengan campuran SC2000 dan Hardener dengan campuran 1:1 dan tunggu selama 15 menit, kemudian bersamaan dengan itu pulley lagging rubber di lem juga dengan campuran yang sama dan tunggu selama 15 menit. 

Drum pulley yang sudah di lem kita lekatkan atau tempelkan pada drum sambil dipukul-pukul dengan menggunakan palu karet (mallet rubber) sampai benar-benar rata. Sewaktu akan memasang lem pada drum pulley diharapkan sebaiknya lebar lem pada drum pulley tidak melebihi dari 200 mm sampai 300 mm dengan maksud menghindari terjebaknya udara. 

Setelah drum pulley tersebut di-lagging, kemudian sambungan dan lagging pulley ditutup dengan lapisan filler layer dimana sebelumnya lagging pulley kita potong dengan pisau cutter hingga berbentuk kive 45˚. Kemudian kasarkan dengan gerinda. Kemudian permukaan lagging digerinda dengan rotating wire brush, agar permukaan lagging menjadi kasar. 

Selesai kita gerinda permukaan lagging, baru kita bersihkan dengan menggunakan solvent. Siapkan filler layer menurut keperluan dan dilanjutkan dengan pengeleman, yaitu kita kuaskan lem (SC2000) pada permukaan lagging hingga rata dan setelah itu filler layer-nya di lem dan tunggu selama ± 15 menit. 

Setelah lem pada permukaan lagging atau filler layer kering. Filler layer tersebut kita lekatkan pada lagging dengan needle roller sampai merata. Setelah selesai pemasangan filler layer, tunggu selama 4 sampai 5 jam kemudian permukaan filler layer kita ratakan dengan gerinda yang halus atau P60/P80 hingga sama rata dengan permukaan lagging. 

4. KESIMPULAN Dari uraian prosedur kerja diatas banyak hal-hal yang dapat menyebabkan gagal / kualitas sambungan kurang baik, sehingga dapat disimpulkan sebagai berikut: Area penyambungan tidak terlindung dari debu dan kotoran pada saat persiapan. Keadaan lembab saat pemberian lem. Pada saat penyambungan lagging pulley lem masih basah. Tekanan kurang. Temperatur terlalu panas atau lembab. Pada saat pengeleman lagging dan pulley tidak merata. Menggunakan bahan penyambungan yang kedaluarsa. Penyusunan material yang tidak padat atau rapi.

 

Share:

PIG LAUNCHER

PIG LAUNCHER

Rubbersheet

Rubbersheet

Tools Splicing Lengkap

Fastener Flexco

Fastener Flexco
Fastener Flexco

POLYURETHANE PRODUCT

RUBBER SKIRT

POLY PIG

BIDI PIG

ROUND WHEEL

PROMO MINGGU INI

FLEXTANE PRODUCT

Support

HUBUNGI KAMI

Nama

Email *

Pesan *